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Convergence for a Vortex Method for Solving 
Euler's Equation* 

By Theodore E. Dushane 

Abstract. We consider a new vortex approximation for solving the initial-value problem 
for the Euler equations in two dimensions. We assume there exists a smooth solution to 
these equations and that the vorticity has compact support. Then we show that our ap- 
proximation to the velocity field converges uniformly in space and time for a short time 
interval. 

1. Introduction. The flow of an incompressible inviscid fluid is described by the 
Euler equations. In two dimensions the initial-value boundary free problem for the 
Euler equations may be written in the form 

(l.la) At + (UpV)t = 0, 

(1.lb) As= 

(I.c) U -9VC V= =9, 

where u = (u, v) is the velocity, t is the vorticity, and ,6 the stream function, subject 
to initial data 00(x, y) = t(x, y; 0). Using (1.1), we may write the velocity in terms of 
the vorticity (see Batchellor [1, p. 527]). 

(1 .2a) u(x, y, t) = K(x, y) * t(x, y, t), 

(1.2b) v(x, y, t) = L(x, y) * t(x, y, t), 

where 

K(x, y) =-2 r2 L(x, y) = 2z2 r2 

where r2 = x2 + y2, and * denotes convolution in the (x, y) plane. 
One method of solution to these equations, originally suggested by Rosenhead [12], 

is the point-vortex method. Takami [13] found the approximation of a vortex sheet 
by point vortices and their subsequent evolution by Rosenhead's method did not 
appear valid. Moore [11] has carried this approach further and claims the method 
unreliable, no matter how many vortices are used and how accurately the integrations 

Received August 29, 1972. 
AMS (MOS) subject classifications (1970). Primary 76C05, 65M99, 76D05, 35Q10; Secondary 

65L05, 70F99. 
Key words and phrases. Vortex approximation, Euler's equation, two dimensions, incom- 

pressible fluid flow, convergence proof. 
* Work performed under NSF Grant GP-29009 and ONR Contract No. N00014-69-A-0200- 

1052. 

Copyright 0 1973, American Mathematical Society 

719 



720 THEODORE E. DUSHANE 

are performed. On the other hand, Christiansen [7] reports some success with his 
calculations. 

Chorin [5], [6] has devised a modification of the point-vortex approximation for 
the full Navier-Stokes equations with boundaries and small viscosity and has made 
several accurate calculations with it. The purpose of our paper is to demonstrate 
rigorously the correctness of this approximation in the specialized case of inviscid 
smooth flow with no boundary. 

2. Method of Solution and Notations. Let us review the standard point-vortex 
method in its simplest form. Assume the vorticity t consists of point masses of constant 
strength, i.e., 

N 

(2.1) t(z) = E ki 5(z - zi(t)) 

where 6 is the Dirac delta function, and z, zi are points in the plane. Substituting t of 
the form (2.1), we obtain (see Batchellor [1, pp. 527-532]) the following equation 
for u = (u, v), at each of the N points; = (xi, y3), 

dxi _ 1 (y_- ye) dy= 1 ki(x, - xi) (2.2) 
~dt 2iri Iz~-~ dt 2r ~i Iz -zA 

for j = 1, ... , N. To compute a solution of the Euler equation for the boundary 
free case, one solves the equations (2.2) subject to some initial distribution of vorticity 
of the type (2.1) which approximates an actual distribution of vorticity. To see how 
this method breaks down, consider an approximation to a vortex line consisting 
of a large number of point vortices. Following Eqs. (2.2), it is not hard to see that 
the vortices will wind around each other because of the singularities in the right-hand 
side (for a reproduction of Takami's results, see Moore [11]). The standard point- 
vortex method fails because of a spurious interaction of vortices at close range. 

Chorin [4] first suggested, according to a theory of turbulence, that "blobs," 
rather than points of vorticity be considered. The stream function for a point vortex 
is (log JrJ)/2r where r is the distance to the vortex. The stream function for a circular 
blob of vorticity 1 = 1/2irr for r < 8 and 0 vorticity elsewhere is 

4t'5(x, y) = log Irl, Ir >- 
(2.3a) 

r < 
2ir In3a 

Chorin's approach, then, amounts to a "cut-off" of the stream function of a point 
vortex. He has also used other cut-off's, including 

4t'6(x, y) 
I 

2log Irl, In > a, 
(2.3b) 

1r2 
47I 32 < 3, 

which corresponds to a blob of constant vorticity t = 1/7_r2 of radius 8. The im- 
portance of the exact form of the cut-off comes in using blobs to approximate vorticity 
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generated at the boundary for the full Navier-Stokes equations. For the boundary 
free case, our proofs will depend on the fact that V6s and its first derivatives inside 

Irl < 8 are no larger than those at the boundary Irl = 8. Cut-off's have been used 
experimentally and have been observed to improve greatly the accuracy of calcula- 
tions made with a point-vortex approximation (see Birdsall et al. [2]). The formulation 
of the cut-off stream function in terms of the stream function of a small blob of 
vorticity suggests the analysis below. Without such a formulation, we appear to be 
introducing an ad hoc device, and we suggest that it is for this reason that such devices 
were previously regarded as experimental accidents, rather than predictable results. 

Using (2.3a), we define the approximating kernels 

(2.4a) Ks = - ,= K(x, y), r > 3, 

- -y/27rr 5, r < a, 

(2.4b) Ls= 9.,3= L(x, y), r > (, 
- x/2irrS, r < a. 

We divide the vorticity into small nonoverlapping blobs Bi and choose points 
z, = (xi, y,) & B, at t = 0. Let z,(t) denote the position of z; at time t under the 
flow. Since by Kelvin's circulation theorem 

(2.5) f = k 
B. 

is a constant independent of time, we may then approximate the velocity (u, v) at 
the point z as follows: 

u(z) = K * t(z) = ff K(z - z')t(z') dz' ~ ff Ks(z - z')t(z') dz" 

(2.6a) - E ff K6(z - z')t(z') dz' 
B i 

I Kb(z- zi)ki. 

We similarly approximate 

(2.6b) v(z) ~ E Ls(z - zi)ki. 

Let the time step be At. Using the last line of (2.6a) to approximate u = dx/dt 
and (2.6b) to approximate v = dy/dt, we move the points z,(O) to positions 2z(nAt) 
according to the scheme (2i = (xl, yi)) 

x,((n + I)At) - xi(nAt) = At(E Ks(2i(nAt) -2(nAt))ki), 

(2.7) 9i((n + 1)At) - y(nAt) = At(, L6(2i(nAt) -2(nAt))kj), 

x,(OAt) = x.(O), Y9(OAt) = y-0) 

where K6 and La are given by (2.4) and k, are given by (2.5), and the summations are 
over all blobs B3. This is our scheme which is to approximate the flow in (1.1). 

Notations. We use the abbreviation z = (x, y) for (x, y) & R2. For st(z, t) con- 
tinuous, let supp 4,(z, t) be the support of ,6 as a function of z for each t, i.e., supp /,(z, t) 
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= closure { z I 4,(z, t) $ 01. For a bounded set B C R2, let diam(B) = sup d(z1, z2), 
Z1, Z2 & B, d = Euclidean distance, and let d(z, B) = inf d(z, z'), z' & B. Let JBI denote 
the area of B. For ,6 = (x, y, t), the space Cs will be the space of s times differentiable 
functions; the space CQ will be those ,6 in Cs with compact support with seminorms 

kt1,.$2 = max sup jDaul , a, + a2 = p3, a3 = f33 where if a = (a,, a2, a3) and 
1 = a, + a2 ? a3 we denote 

DaU = O'c a IU/laX ayC 2ata3 

For A, = 0, 02 = 0, we use the conventional notation Rt+11 = = sup ,tj 
We shall use the abuse of notation EBieA ( ... i *.. ) to mean summation over 

the index i such that Bi & A. For r a real number [r] will denote the integral part of r. 

3. Preliminaries: The Kernels K5 and L,. Throughout the remainder of this 
paper we will be discussing the approximation (2.7) to the Euler equations (1.1) 
in a fixed time interval [0, ao]. We assume furthermore that a smooth solution to (1.1) 
exists so that the velocity field (u, v) is in C2 and the vorticity lies in C0. 

Our approximation depends upon dividing up the fluid into small blobs and 
accurately following them. In order to make precise those ideas we shall need some 
preliminary results. We have first a lemma about the extent of contraction and 
expansion in a smooth flow: 

LEMMA 3.1. Let z1(t), z2(t) be two points of the flow. Let the velocity field u & C2. 

Then there exists a constant C so that 

(3.1) C-1Iz1(O) - Z2(0)I -< Iz1(t) - Z2(t)1 ? CIz1(0) - Z2(0)I 

for 0 < t < ao. The constant Cdepends on I uH 12 ,0for O < t < ao. 

Proof. Let z,(t) = (x,(t), y,(t)), u(z,(t)) = u,(t), v(z,(t)) = v,(t) for i = 1, 2. 
Integrating the equations of motion, we have 

rt 
(3.2a) xl(t) - X2(t) = X1(0) - X2(0) + f (Ul(S) - U2(S)) ds, 

t 

(3.2b) y1(t) - Y2(t) = y1(0) - Y2(0) + (V1(S) - V2(S)) ds. 

For 0 < s < t, we have 

UI(S) - U2(S) = au 
(70(S))(X1(S) - X2(S)) + a- (7O(S))(yI(S) - Y2(S)) ax ay 

where 7(s) is chosen by the mean value theorem. Express v,(s) - v2(s) similarly and 
let f(t) = x1(t) - x2(t), g(t) = yM(t) - Y2(t). Then by differentiating (3.2), we obtain 

f'(t) = a(t)f(t) + b(t)g(t), g'(t) = c(t)f(t) + d(t)g(t), 

where a, b, c, d are bounded in absolute value by a constant m = SUPOt?T |jUjj2,0 
Then consider 1z1(t) - Z2(t)12 = f2(t) + g2(t) = F(t). We find, since 1F'(t)= 

ff' + gg' = af2 + (b + c)fg + dg2, that -4mF ? F' < 4mF. 
Integrating, we obtain (3.1) with C = e2mT. 
Let the region of vorticity be divided into a finite number of nonoverlapping 

regions Bi at t = 0. The Bi then move with the fluid, and from Lemma 3.1, we have 
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LEMMA 3.2. Let u & C2 and t & CO. Then we may choose the B, so that 

(3.3) max diam(Bi) < CAt 

for 0 ? t ? ao for some constant C independent of At and depending on a0. 
Proof. We choose max diam(Bi) < At at t = 0 and apply Lemma 3.1. 
Remark. We use the hypothesis of the smoothness of the flow strongly to get 

the regions Bi to maintain their initial size, at least in order of magnitude. For our 
problem, the smoothness is a reasonable hypothesis on physical grounds, either in 
the problem of inviscid fluid flow or the problem of plasma flow (see Levy 
and Hockney [10]). 

We shall need some technical results about sums of the form E Ka(z -z)k 
where the zi are near to B.. The first of these is 

LEMMA 3.3. Let d(z,, Bj, the distance from z, to B., be O(At) for each i. Then we 
have 

(3.4) Z IK(z - z)I IBLI = O(Ijsupp()I) = 0(1) 

independent of At and the same formula with Ka replaced by La. 
Remark. Note that Eq. (3.4) is the analogue of the integral f I KI, where the 

integral is taken over supp(t). 
Proof of Lemma 3.3. We may assume without loss of generality that z = 0 and 

that d(z, supp t) < 1 + max d(zi, B). If the above does not hold, then IK,(z - z)j _ 1 
and (3.4) is bounded by E 1BJ = Isupp t1 = 0(1). Let C1 be a constant satisfying 
(3.3) of Lemma 3.2. Then let C2 be a constant so that d(zi, B,) _ C2At for each i. 
We divide the z-plane into annuli using circles with a common center at the origin and 
radii rn = nAr, where Ar = C3At, C3 = max { C1, C2I. Let A. = {z I r, < I zI < r.1 
and divide the blobs Bi into classes In so that B C I,, if rn,- < d(z, Bj) < rn, i.e., if 
the nearest point of Bi is in A,. 

We then have, for B1 C I, zi C A.,K U A. U A,+1 and therefore lKs(z - z,)l < 

(2xrrn41)- for n > 3. Since the B, are nonoverlapping, and since a blob B E I,, can 
extend, at most from A, to A,+1, 

Z 
BA 

$ 
_A.1 + |A.+1| 

= 
7r(rn+i 

- 
rn_ ) 

BiEIn 

For Bi C I, U I2, K8(z - zi)l < (27rAr)-1 and EBGI1,UI, 2 Bj < 7r(3Ar)2. Using 
these facts, we may write, for N = [(diam(supp t) + 1)/Ar] + 1, 

2 N 

I IKs(z -zi)l |B Il 
= E E I Ks(z- zi)l |Bj|I + E I Ks(z- zi)l |Bj I 

n=1 BJEln n=3 

N 

< (27rAr) 397r(Ar)2 + E (27rrn -'(rn 1 + rn+D2Ar 
(3.5) n=3 

< C(Ar + E (rn-2) l(rn+l + rn-1)Ar) 

< C(diam(supp t) + 1) = 0(1). 

We also have 
LEMMA 3.4. Let z, C Bi and let 1z, - zI < CAt for each i. Then, we have 
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(3.6) K s (z- z) - K(z - ) li IBtI = O(log At) max Izi - z'i 

and the same formula with Ka replaced by La. 
Proof. Our proof is like that of Lemma 3.3. We use the fact that I aKs/ax and 

a K8/ayj are majorized by (27rr2)- , and that the integral of this function in the 
annuli around the origin bounded by r = At and r = 1/At is 4xr log Atj . 

We divide the blobs as we did in the proof of Lemma 3.3, i.e., so that Bi E An if 
the nearest point of Bi is in An and assume z = 0. Let us recall that if Bi E A,, then 
z' G A,1 tJ 4A. U An+1. Hence, we may majorize the left-hand side of (3.6) as 
follows: 

2 

Eii Eii (IKa(z - zi)I + IKa(z - Z)1) IBi 
37) n=1 Bi GIn 

+ EK8 E (a (a)xi -x) + b(a)(yi -y')) Bi 
3BiGIn \ax 'ay 

where zi = (xi, yi) and z' = (x', y') and at is chosen by the mean value theorem between 
zi and z'. The first sum in (3.7) is O(At) by the proof of Lemma 3.3 (see Eq. (3.5)). 
To estimate the second sum, we take absolute values and apply the triangle inequality 
to majorize (3.7) by 

f=3 B~ln (| ax (ai) + (aiK ) IBi max Izi -z I + O(At). 
n=3 BiGIn k x (z)+ay(i f~ 

For Bi E In, we have 

maxM aa 
(ai) 

a (ai) f < (27rr22)1 and 2 
fBj _ r(rn+1 -2 

Let us now assume d(z, supp t) ? (At)-1. We may then majorize the above by 

(3.8) ( Ar) max Izi - Z I + O(At), 

where N' = max { N, (At)-1}. But since JfAS r-2(r dr dO) = 4ir Ilog Atj where A is 
the region bounded by r = At and r = (At)- 1, we may bound the sum in (3.8) above by 

(3.9) O(log At) max Izi - z'I + O(At). 

Then since we will be able to assume max Izi - zfl will be of order at least At, (3.9) 
is of the order Ilog Atj maxim Izi - z'I 

If d(z, supp t) > (At)-', then we may majorize (3.6) by 

E (I Ka(z - z) + I K8(z -Z9)) IBi I 

< At E BiB = O(At) = O(log At) max Izi -Z I. 

Using Lemma 3.4, we may prove the following theorem about approximating 
the velocity field. 

THEOREM 3.1. Let u E C2 and t E C1. Let B. be chosen according to Lemma 3.2, 
and let a = O(At). 
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(3.1Oa) u(z) = E Ks(z - zi)ki + O(log At(max d(zi, Bj))), 

(3.1Ob) v(z) = E Ls(z - z)ki + O(log At(max d(zi, B1))). 

Proof. We will prove (3. 1Oa). We observe that 

u(z) = f K(z - z')t(z') dz' 

(3.11) - ff ~ K(z')t(z') dz' + 0(b) 

-E f~ I Ks(z -z')t(z') dz' + 0(b) 

- , Ka(z - z')t(z') IBBi + O(b). 

The points z'E C Bi in (3.11) are chosen by the mean value theorem for the integral. 
Noting that we then have, writing k, = t(zi') I , for some zi' chosen by the mean 
value theorem, 

u(z) = , Ks(z -zi)ki 

+ Z (Ks(z - Z)(Z)- Kb(z - zj)t(zj")) IB I + O(tt) 

(3.12) - jE Ks(z - zi)k,. + j (Ka(z - z) - Ks(z - zj))t(z'i) IB1I 

+ j K8(z - z')(2(zi) - t(z"')) IBiI + O(At). 

We estimate the second term of (3.12) using the fact that t is continuous, of compact 
support, hence bounded. Therefore this term is of order Ilog Atj maxi Izi- zij using 
Lemma 3.4. The third term of (3.12) may be majorized using the fact that C Co, 
and Lemma 3.3, as follows 

(X I |Ka(z - Z) IBI1) max 1I(z')- (z') I 

0(1) sup I I II1,o max Iz' - z"'I = O(log At)(ta). 
0(< t S ao 

Using the above, we obtain (3. 1Oa) from (3.12). 

4. Accuracy of the Scheme-Convergence to the Solution. We may then 
compare the positions of the fj at discrete time steps nAt to the actual positions 
z,(nAt) in the following: 

THEOREM 4.1. Let z, be chosen arbitrarily in B. at t = 0. Then there exists a time 
interval [0, ao] in which the following holds: Calculate the motion of the 2,(nAt) at 
t = nAt for n = 0, 1, * , [ao/At] by (2.7). We then have, for each E > 0, 

(4.1) z,(nAt) = z,(nAt) + O(At)2-a-f 

for 0 < nAt < a/Co = ao and At sufficiently small. The constant CO is determined 
by the flow. 

Proof. Let 2,(nAt) = = (xk, 98) and let z,(nAt) = (xv, y'). We will prove (4.1) 
for the x component of z by induction on n. We have 
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(n+1) At 
n+1 n = IA) x = J u ds = u(z?, nAt)At + O(Lt)2 

(4 .2) nA/ t 

= At ( Ka(-zi)ki + O((At) log At) 

using Theorem 3.1. Then from (2.7) and (4.2), we have 

~n+l n+l ~n n) 
(Xi - Xi+) (x - x ) 

= /t( Z((2 -z - Ka -z))ki) + O(At log AXt) max 2i znI 

= L\t(Z (K8(i -z) - Ka( -z))ki) + At (Ks(2i z) - Ka -z,)))ki 

+ O(LAt log AXt) max 1- zni. 

Using Lemma 3.4, we have 

(4.3) i xn1) - (3in _ xi) = O(At) log At max - z zi 

We wish to show by induction that the total error maxi 12 -znil at time nAt is of 
the order 

(4.4) (At2 log AtI)(At |log AtI + 1)n1. 

To see this for n = 1, we subtract (2.7) for n = 0 from (4.2) for n = 0. Since 2? = z? 
for each j, the right-hand sides of (2.7) and (4.2), both for n = 0, are the same except 
for the term O(At2 log At) coming from (4.2) for n = 0. Hence, for each i, xl -x1 = 
-1 ~ 
X-i -(?-x?) = i - X- (xl - x) is of order O(At2 log Xt), which is (4.4) 
for n = 1. Then to find the error at t = (n + I)At, we use (4.3) to estimate 

jn+l _x+11 < I(in+1 _ xn+1) _ (n - xn)I + pn - xn I 

= O(At log At) max In- z_ | + O(max 2i - zn) 

Then using our hypothesis of induction (4.4) in the above, we estimate 

1- xI = O(4t log t t)*O((At2 log Xt)(At tlog AXtI + 1f)n) 

+ O((At2 log AXt)((A t) |log AXtI + 1)n-) 

= O((Lt2 log At)(At |log AtI + 1)n), 

which can be verified using the binomial theorem. Then using the inequality 1 + 
x ? ex = exp (x) for x = O(At log At), we have 

X _ = O((t log AXt) exp (O(L t log A t)n)) 

= O(At2 log At(At)-Cont) 

for some constant CO. So if ConAt _ a, 

in- n+11 = O(At2-a) log At = O(At)2-aE- f h 

which is (4.1). 
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We may then show how accurately the velocity field may be approximated under 
the above conditions: 

THEOREM 4.2. Let zi be points in Bi as before. Let 2,(nAt) be defined by (2.7). 
Define an approximate velocity field ft = (ft, 5) by the formulas 

a(z, t) = A Ks(z -_z )ki, i(z, t) = A L8(z -z)ki 

where n = [t/tAt] for 0 < t < ao, and ao is given by Theorem 4.1. We then have 

(4.5) a(z, t) _ u(z, t) = O(At) 

fore > 0,allzand0 ? t < a. 
Proof. Since u E C2, and since C E Co, we have (4.5) for sufficiently large z 

using the fact that, for z ($ supp i, 

lu(z) I < (d(z, supp -1)(27r) -1Am 

and 

i(z) = E K (z -zi)ki < (2d(z, supp )) 1(27r)-l E 1kij 

= 2(d(z, supp t))- 1(27r)- 
1 

supp 1t Bi. 

For z near supp i, we may write u(z, nAt) - ia(z, nAt) as a difference equal to the 
difference in the second equation of (3.12). Estimating as we did in the proof of 
Theorem 3.1, we will get 

u(z, nAt) - a(z, nAt) = O(log At)O(At)2ae = O(At)2a2e. 

Then since E is arbitrary, we have (4.5). 

5. Discussion and Generalizations. Our convergence proof gives theoretical 
evidence that Chorin's new vortex method is correct. The efficacy of the vorticity 
method lies, in our opinion, in its use of the known particular structure of solutions 
to the Euler equations. It is analogous to the building of solutions to local approxi- 
mations as in Glimm [8] for nonlinear hyperbolic equations. 

The approximation discussed has practical significance. In many fluid dynamical 
applications, the region of vorticity is very small compared with the total area of 
the flow so the total number of vortices is small. This applies in the case of the vorticity 
generated in the wake of an obstacle. In difference scheme methods (Krzhivitski and 
Ladyzhenskaya [9], Chorin [3]), the entire velocity field must be approximated. In 
our method, there is also no problem of boundary conditions at infinity. Finally, the 
graphical representation of the vortices themselves give excellent qualitative as well 
as quantitative results. See Chorin [6]. 

In the case of fluid flow in two dimensions, the solutions to the Euler equations 
approximate solutions to the Navier-Stokes equations with small viscosity. However, 
in plasma physics, the Euler equations are precisely the equations of motion, as Levy 
and Hockney [10] have demonstrated. 

For the Navier-Stokes equations with boundary we conjecture our scheme and the 
more general scheme may be proved to converge in the large and we expect soon to 
publish results in that direction. 
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